amr-ashour/amrs-data-science-and-machine-learning-assistant icon
public
Published on 4/4/2025
Amr's Data science and machine learning Assistant

Specialized in data science and ML, focusing on Python scientific stack, statistical analysis, and model development.

Rules
Prompts
Models
Context
anthropic Claude 3.5 Haiku model icon

Claude 3.5 Haiku

anthropic

200kinput·8.192koutput
mistral Codestral model icon

Codestral

mistral

voyage Voyage AI rerank-2 model icon

Voyage AI rerank-2

voyage

voyage voyage-code-3 model icon

voyage-code-3

voyage

ollama qwen2.5-coder 1.5b model icon

qwen2.5-coder 1.5b

ollama

openai OpenAI GPT-4o Mini model icon

OpenAI GPT-4o Mini

OpenAI

128kinput·16.384koutput
openai o3-mini model icon

o3-mini

OpenAI

200kinput·100koutput
novita deepseek-r1 model icon

deepseek-r1

novita

gemini Gemini 2.0 Flash model icon

Gemini 2.0 Flash

gemini

1048kinput·8.192koutput
voyage voyage-code-2 model icon

voyage-code-2

voyage

novita llama-3.3-70b-instruct model icon

llama-3.3-70b-instruct

novita

ollama deepseek-r1 8b model icon

deepseek-r1 8b

ollama

openai OpenAI GPT-4o model icon

OpenAI GPT-4o

OpenAI

128kinput·16.384koutput
sambanova Qwen2.5 Coder-32B-Instruct model icon

Qwen2.5 Coder-32B-Instruct

sambanova

deepinfra DeepSeek R1 model icon

DeepSeek R1

deepinfra

xAI Grok 2 model icon

Grok 2

xAI

ollama nomic-embed-text latest model icon

nomic-embed-text latest

ollama

openai o1 model icon

o1

OpenAI

200kinput·100koutput
anthropic CodeGate Anthropic model icon

CodeGate Anthropic

anthropic

anthropic Claude 3.7 Sonnet model icon

Claude 3.7 Sonnet

anthropic

200kinput·8.192koutput
anthropic Claude 3.5 Sonnet model icon

Claude 3.5 Sonnet

anthropic

200kinput·8.192koutput
relace Relace Instant Apply model icon

Relace Instant Apply

relace

openai Morph Fast Apply model icon

Morph Fast Apply

OpenAI

You are an experienced data scientist who specializes in Python-based
data science and machine learning. You use the following tools:
- Python 3 as the primary programming language
- PyTorch for deep learning and neural networks
- NumPy for numerical computing and array operations
- Pandas for data manipulation and analysis
- Jupyter for interactive development and visualization
- Conda for environment and package management
- Matplotlib for data visualization and plotting
Condahttps://docs.conda.io/en/latest/
Jupyterhttps://docs.jupyter.org/en/latest/
Matplotlibhttps://matplotlib.org/stable/
NumPyhttps://numpy.org/doc/stable/
Pandashttps://pandas.pydata.org/docs/
Pythonhttps://docs.python.org/3/
PyTorchhttps://pytorch.org/docs/stable/index.html
Reacthttps://react.dev/reference/
Nuxt.jshttps://nuxt.com/docs

Prompts

Learn more
Exploratory Data Analysis
Initial data exploration and key insights
Create an exploratory data analysis workflow that includes:

Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions

Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)

Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation

Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook

The user has provided the following information:
Data Pipeline Development
Create robust and scalable data processing pipelines
Generate a data processing pipeline with these requirements:

Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues

Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations

Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring

Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests

The user has provided the following information:

Context

Learn more
@code
Reference specific functions or classes from throughout your project
@docs
Reference the contents from any documentation site
@diff
Reference all of the changes you've made to your current branch
@terminal
Reference the last command you ran in your IDE's terminal and its output
@problems
Get Problems from the current file
@folder
Uses the same retrieval mechanism as @Codebase, but only on a single folder
@codebase
Reference the most relevant snippets from your codebase
@url
Reference the markdown converted contents of a given URL
@repo-map
Reference the outline of your codebase
@open
Reference the contents of all of your open files
@jira
Reference the conversation in a Jira issue
@clipboard
Reference recent clipboard items
@commit
@os
Reference the architecture and platform of your current operating system
@greptile
Query a Greptile index of the current repo/branch
@currentFile
Reference the currently open file
@file
Reference any file in your current workspace

No Data configured

MCP Servers

Learn more

Docker MCP Postgres

docker run -i --rm mcp/postgres ${{ secrets.amr-ashour/amrs-data-science-and-machine-learning-assistant/docker/mcp-postgres/POSTGRES_CONNECTION_STRING }}

Postgres

npx -y @modelcontextprotocol/server-postgres ${{ secrets.amr-ashour/amrs-data-science-and-machine-learning-assistant/anthropic/postgres-mcp/CONNECTION_STRING }}

GitHub

npx -y @modelcontextprotocol/server-github