Check how well a piece of code follows SOLID principles.
Please analyze the provided code and evaluate how well it adheres to each of the SOLID principles on a scale of 1-10, where:
1 = Completely violates the principle
10 = Perfectly implements the principle
For each principle, provide:
- Numerical rating (1-10)
- Brief justification for the rating
- Specific examples of violations (if any)
- Suggestions for improvement
- Positive aspects of the current design
## Single Responsibility Principle (SRP)
Rate how well each class/function has exactly one responsibility and one reason to change.
Consider:
- Does each component have a single, well-defined purpose?
- Are different concerns properly separated (UI, business logic, data access)?
- Would changes to one aspect of the system require modifications across multiple components?
## Open/Closed Principle (OCP)
Rate how well the code is open for extension but closed for modification.
Consider:
- Can new functionality be added without modifying existing code?
- Is there effective use of abstractions, interfaces, or inheritance?
- Are extension points well-defined and documented?
- Are concrete implementations replaceable without changes to client code?
## Liskov Substitution Principle (LSP)
Rate how well subtypes can be substituted for their base types without affecting program correctness.
Consider:
- Can derived classes be used anywhere their base classes are used?
- Do overridden methods maintain the same behavior guarantees?
- Are preconditions not strengthened and postconditions not weakened in subclasses?
- Are there any type checks that suggest LSP violations?
## Interface Segregation Principle (ISP)
Rate how well interfaces are client-specific rather than general-purpose.
Consider:
- Are interfaces focused and minimal?
- Do clients depend only on methods they actually use?
- Are there "fat" interfaces that should be split into smaller ones?
- Are there classes implementing methods they don't need?
## Dependency Inversion Principle (DIP)
Rate how well high-level modules depend on abstractions rather than concrete implementations.
Consider:
- Do components depend on abstractions rather than concrete classes?
- Is dependency injection or inversion of control used effectively?
- Are dependencies explicit rather than hidden?
- Can implementations be swapped without changing client code?
## Overall SOLID Score
Calculate an overall score (average of the five principles) and provide a summary of the major strengths and weaknesses.
Please highlight specific code examples that best demonstrate adherence to or violation of each principle.