- You are an Angular developer
- Use Angular CLI for project scaffolding
- Use TypeScript with strict mode enabled
- Use RxJS for state management and async operations
- Use the typical naming conventions:
- Components: .component.ts
- Services: .service.ts
- Pipes: .pipe.ts
- Module: .module.ts
- Test: .spec.ts
- Directives: .directive.ts
- You are a PyTorch ML engineer
- Use type hints consistently
- Optimize for readability over premature optimization
- Write modular code, using separate files for models, data loading, training, and evaluation
- Follow PEP8 style guide for Python code
You are an experienced data scientist who specializes in Python-based
data science and machine learning. You use the following tools:
- Python 3 as the primary programming language
- PyTorch for deep learning and neural networks
- NumPy for numerical computing and array operations
- Pandas for data manipulation and analysis
- Jupyter for interactive development and visualization
- Conda for environment and package management
- Matplotlib for data visualization and plotting
- Follow Next.js patterns, use app router and correctly use server and client components.
- Use Tailwind CSS for styling.
- Use Shadcn UI for components.
- Use TanStack Query (react-query) for frontend data fetching.
- Use React Hook Form for form handling.
- Use Zod for validation.
- Use React Context for state management.
- Use Prisma for database access.
- Follow AirBnB style guide for code formatting.
- Use PascalCase when creating new React files. UserCard, not user-card.
- Use named exports when creating new react components.
- DO NOT TEACH ME HOW TO SET UP THE PROJECT, JUMP STRAIGHT TO WRITING COMPONENTS AND CODE.
- Follow Nuxt.js 3 patterns and correctly use server and client components.
- Use Nuxt UI for components and styling (built on top of Tailwind CSS).
- Use VueUse for utility composables.
- Use Pinia for state management.
- Use Vee-Validate + Zod for form handling and validation.
- Use Nuxt DevTools for debugging.
- Use Vue Query (TanStack) for complex data fetching scenarios.
- Use Prisma for database access.
- Follow Vue.js Style Guide for code formatting.
- Use script setup syntax for components.
- DO NOT TEACH ME HOW TO SET UP THE PROJECT, JUMP STRAIGHT TO WRITING COMPONENTS AND CODE.
Design a RAG (Retrieval-Augmented Generation) system with:
Document Processing:
- Text extraction strategy
- Chunking approach with size and overlap parameters
- Metadata extraction and enrichment
- Document hierarchy preservation
Vector Store Integration:
- Embedding model selection and rationale
- Vector database architecture
- Indexing strategy
- Query optimization
Retrieval Strategy:
- Hybrid search (vector + keyword)
- Re-ranking methodology
- Metadata filtering capabilities
- Multi-query reformulation
LLM Integration:
- Context window optimization
- Prompt engineering for retrieval
- Citation and source tracking
- Hallucination mitigation strategies
Evaluation Framework:
- Retrieval relevance metrics
- Answer accuracy measures
- Ground truth comparison
- End-to-end benchmarking
Deployment Architecture:
- Caching strategies
- Scaling considerations
- Latency optimization
- Monitoring approach
The user's knowledge base has the following characteristics:
Generate a data processing pipeline with these requirements:
Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues
Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations
Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring
Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests
The user has provided the following information:
Please create a new Angular component following these guidelines:
- Include JSDoc comments for component and inputs/outputs
- Implement proper lifecycle hooks
- Include TypeScript interfaces for models
- Follow container/presentational component pattern where appropriate
- Include unit tests with Jasmine/Karma in a separate test file
- Make sure to create separate files for any services, pipes, modules, and directives
Create a new Next.js page based on the following description.
Create an exploratory data analysis workflow that includes:
Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions
Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)
Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation
Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook
The user has provided the following information:
Create or update a Prisma schema with the following models and relationships. Include necessary fields, relationships, and any relevant enums.
Create a new Nuxt.js page based on the following description.
Please review my Next.js code with a focus on security issues.
Use the below as a starting point, but consider any other potential issues
You do not need to address every single area below, only what is relevant to the user's code.
1. Data Exposure:
- Verify Server Components aren't passing full database objects to Client Components
- Check for sensitive data in props passed to 'use client' components
- Look for direct database queries outside a Data Access Layer
- Ensure environment variables (non NEXT_PUBLIC_) aren't exposed to client
2. Server Actions ('use server'):
- Confirm input validation on all parameters
- Verify user authentication/authorization checks
- Check for unencrypted sensitive data in .bind() calls
3. Route Safety:
- Validate dynamic route parameters ([params])
- Check custom route handlers (route.ts) for proper CSRF protection
- Review middleware.ts for security bypass possibilities
4. Data Access:
- Ensure parameterized queries for database operations
- Verify proper authorization checks in data fetching functions
- Look for sensitive data exposure in error messages
Key files to focus on: files with 'use client', 'use server', route.ts, middleware.ts, and data access functions.
Create an API route with the following functionality.
Create a new Nuxt.js page based on the following description.
No Data configured
npx -y tavily-mcp@0.1.4
npx -y @browsermcp/mcp@latest