igor-furman/mistral icon
public
Published on 8/22/2025
All Mistral

An AI coding assistant powered by Mistral, tailored for tasks like chat, edit, apply, and embedding workflows within your development environment.

Rules
Prompts
Models
Context
Data
mistral Mistral Large model icon

Mistral Large

mistral

mistral Codestral model icon

Codestral

mistral

mistral Mistral Embed model icon

Mistral Embed

mistral

anthropic Claude 4 Sonnet model icon

Claude 4 Sonnet

anthropic

200kinput·64koutput
gemini Gemini 2.5 Pro model icon

Gemini 2.5 Pro

gemini

1048kinput·65.536koutput
ollama deepseek-r1 8b model icon

deepseek-r1 8b

ollama

openai Morph Fast Apply model icon

Morph Fast Apply

OpenAI

relace Relace Instant Apply model icon

Relace Instant Apply

relace

40kinput·32koutput
deepinfra Qwen2.5 Coder 32B Instruct model icon

Qwen2.5 Coder 32B Instruct

deepinfra

You are an experienced data scientist who specializes in Python-based
data science and machine learning. You use the following tools:
- Python 3 as the primary programming language
- PyTorch for deep learning and neural networks
- NumPy for numerical computing and array operations
- Pandas for data manipulation and analysis
- Jupyter for interactive development and visualization
- Conda for environment and package management
- Matplotlib for data visualization and plotting
Continuehttps://docs.continue.dev
PyTorchhttps://pytorch.org/docs/stable/index.html
Pythonhttps://docs.python.org/3/
Condahttps://docs.conda.io/en/latest/
LanceDB Enterprise Docshttps://docs.lancedb.com/enterprise/introduction
Matplotlibhttps://matplotlib.org/stable/
Jupyterhttps://docs.jupyter.org/en/latest/

Prompts

Learn more
Data Pipeline Development
Create robust and scalable data processing pipelines
Generate a data processing pipeline with these requirements:

Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues

Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations

Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring

Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests

The user has provided the following information:
Exploratory Data Analysis
Initial data exploration and key insights
Create an exploratory data analysis workflow that includes:

Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions

Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)

Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation

Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook

The user has provided the following information:
New Module
Create a new PyTorch module
Please create a new PyTorch module following these guidelines:
- Include docstrings for the model class and methods
- Add type hints for all parameters
- Add basic validation in __init__
My prompt
Sequential Thinking Activation
<!-- Sequential Thinking Workflow -->
<assistant>
    <toolbox>
        <mcp_server name="sequential-thinking"
                        role="workflow_controller"
                        execution="sequential-thinking"
                        description="Initiate the sequential-thinking MCP server">
            <tool name="STEP" value="1">
                <description>Gather context by reading the relevant file(s).</description>
                <arguments>
                    <argument name="instructions" value="Seek proper context in the codebase to understand what is required. If you are unsure, ask the user." type="string" required="true"/>
                    <argument name="should_read_entire_file" type="boolean" default="true" required="false"/>
                </arguments>
                <result type="string" description="Context gathered from the file(s). Output can be passed to subsequent steps."/>
            </tool>
            <tool name="STEP" value="2">
                <description>Generate code changes based on the gathered context (from STEP 1).</description>
                <arguments>
                    <argument name="instructions" value="Generate the proper changes/corrections based on context from STEP 1." type="string" required="true"/>
                    <argument name="code_edit" type="object" required="true" description="Output: The proposed code modifications."/>
                </arguments>
                <result type="object" description="The generated code changes (code_edit object). Output can be passed to subsequent steps."/>
            </tool>
            <tool name="STEP" value="3">
                <description>Review the generated changes (from STEP 2) and suggest improvements.</description>
                <arguments>
                    <argument name="instructions" type="string" value="Review the changes applied in STEP 2 for gaps, correctness, and adherence to guidelines. Suggest improvements or identify any additional steps needed." required="true"/>
                </arguments>
                <result type="string" description="Review feedback, suggested improvements, or confirmation of completion. Final output of the workflow."/>
            </tool>
        </mcp_server>
    </toolbox>
</assistant>

Context

Learn more
@diff
Reference all of the changes you've made to your current branch
@codebase
Reference the most relevant snippets from your codebase
@url
Reference the markdown converted contents of a given URL
@folder
Uses the same retrieval mechanism as @Codebase, but only on a single folder
@terminal
Reference the last command you ran in your IDE's terminal and its output
@code
Reference specific functions or classes from throughout your project
@file
Reference any file in your current workspace
@currentFile
Reference the currently open file
@clipboard
Reference recent clipboard items
@open
Reference the contents of all of your open files
@repo-map
Reference the outline of your codebase
@docs
Reference the contents from any documentation site

Logstash

${{ secrets.igor-furman/mistral/continuedev/logstash-dev-data/LOGSTASH_URL }}

Google Cloud Storage

${{ secrets.igor-furman/mistral/continuedev/google-cloud-storage-dev-data/GCP_SERVER_URL }}

MCP Servers

Learn more

Filesystem

npx -y @modelcontextprotocol/server-filesystem ${{ secrets.igor-furman/mistral/anthropic/filesystem-mcp/PATH }}

Repomix

npx -y repomix --mcp

Memory

npx -y @modelcontextprotocol/server-memory

Playwright

npx -y @executeautomation/playwright-mcp-server

Sequential Thinking

docker run --rm -i mcp/sequentialthinking

Browser MCP

npx -y @browsermcp/mcp@latest