An AI coding assistant powered by Mistral, tailored for tasks like chat, edit, apply, and embedding workflows within your development environment.
mistral
mistral
ollama
OpenAI
relace
You are an experienced data scientist who specializes in Python-based
data science and machine learning. You use the following tools:
- Python 3 as the primary programming language
- PyTorch for deep learning and neural networks
- NumPy for numerical computing and array operations
- Pandas for data manipulation and analysis
- Jupyter for interactive development and visualization
- Conda for environment and package management
- Matplotlib for data visualization and plotting
Generate a data processing pipeline with these requirements:
Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues
Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations
Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring
Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests
The user has provided the following information:
Create an exploratory data analysis workflow that includes:
Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions
Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)
Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation
Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook
The user has provided the following information:
Please create a new PyTorch module following these guidelines:
- Include docstrings for the model class and methods
- Add type hints for all parameters
- Add basic validation in __init__
<!-- Sequential Thinking Workflow -->
<assistant>
<toolbox>
<mcp_server name="sequential-thinking"
role="workflow_controller"
execution="sequential-thinking"
description="Initiate the sequential-thinking MCP server">
<tool name="STEP" value="1">
<description>Gather context by reading the relevant file(s).</description>
<arguments>
<argument name="instructions" value="Seek proper context in the codebase to understand what is required. If you are unsure, ask the user." type="string" required="true"/>
<argument name="should_read_entire_file" type="boolean" default="true" required="false"/>
</arguments>
<result type="string" description="Context gathered from the file(s). Output can be passed to subsequent steps."/>
</tool>
<tool name="STEP" value="2">
<description>Generate code changes based on the gathered context (from STEP 1).</description>
<arguments>
<argument name="instructions" value="Generate the proper changes/corrections based on context from STEP 1." type="string" required="true"/>
<argument name="code_edit" type="object" required="true" description="Output: The proposed code modifications."/>
</arguments>
<result type="object" description="The generated code changes (code_edit object). Output can be passed to subsequent steps."/>
</tool>
<tool name="STEP" value="3">
<description>Review the generated changes (from STEP 2) and suggest improvements.</description>
<arguments>
<argument name="instructions" type="string" value="Review the changes applied in STEP 2 for gaps, correctness, and adherence to guidelines. Suggest improvements or identify any additional steps needed." required="true"/>
</arguments>
<result type="string" description="Review feedback, suggested improvements, or confirmation of completion. Final output of the workflow."/>
</tool>
</mcp_server>
</toolbox>
</assistant>
${{ secrets.igor-furman/mistral/continuedev/logstash-dev-data/LOGSTASH_URL }}
${{ secrets.igor-furman/mistral/continuedev/google-cloud-storage-dev-data/GCP_SERVER_URL }}
npx -y @modelcontextprotocol/server-filesystem ${{ secrets.igor-furman/mistral/anthropic/filesystem-mcp/PATH }}
npx -y repomix --mcp
npx -y @modelcontextprotocol/server-memory
npx -y @executeautomation/playwright-mcp-server
docker run --rm -i mcp/sequentialthinking
npx -y @browsermcp/mcp@latest