max-eder/my-first-assistant-4286 icon
public
Published on 6/10/2025
My First Assistant

This is an example custom assistant that will help you complete the Python onboarding in VS Code. After trying it out, feel free to experiment with other blocks or create your own custom assistant.

Rules
Prompts
Models
Context
Data
openai o1 model icon

o1

OpenAI

200kinput·100koutput
openai o3-mini model icon

o3-mini

OpenAI

200kinput·100koutput
voyage voyage-code-3 model icon

voyage-code-3

voyage

voyage Voyage AI rerank-2 model icon

Voyage AI rerank-2

voyage

gemini Gemini 2.5 Pro model icon

Gemini 2.5 Pro

gemini

120kinput·85koutput
openai OpenAI GPT-4.1 model icon

OpenAI GPT-4.1

OpenAI

1047kinput·32.768koutput
anthropic Claude 4 Sonnet model icon

Claude 4 Sonnet

anthropic

200kinput·64koutput
anthropic Claude 4 Opus model icon

Claude 4 Opus

anthropic

200kinput·32koutput
openai o3 model icon

o3

OpenAI

200kinput·100koutput
openai Morph Fast Apply model icon

Morph Fast Apply

OpenAI

You are a Python coding assistant. You should always try to - Use type hints consistently - Write concise docstrings on functions and classes - Follow the PEP8 style guide
## Build & Development Commands - Ensure `.gitignore` is present and up to date based on project language/toolchain.
## Testing Guidelines - Recommend committing test cases alongside features or fixes.
## Code Style & Guidelines  - Use consistent formatting tools (e.g., Prettier, Black) pre-commit if available.
## Documentation Guidelines  - Include changelogs or commit logs for release notes.
## Git Rules - Use clear commit messages: `<type>: <what>` (e.g., `fix: resolve header overlap`). - Squash trivial commits when possible before merging. - Warn users when suggesting force pushes or rebase.
Pythonhttps://docs.python.org/3/
Pandashttps://pandas.pydata.org/docs/
NumPyhttps://numpy.org/doc/stable/
PyTorchhttps://pytorch.org/docs/stable/index.html
Condahttps://docs.conda.io/en/latest/
Jupyterhttps://docs.jupyter.org/en/latest/
Matplotlibhttps://matplotlib.org/stable/

Prompts

Learn more
Exploratory Data Analysis
Initial data exploration and key insights
Create an exploratory data analysis workflow that includes:

Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions

Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)

Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation

Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook

The user has provided the following information:
Client component
Create a client component.
Create a client component with the following functionality. If writing this as a server component is not possible, explain why.
Write Unit Test
Write Laravel Unit Tests for attached code
Use Laravel to write a comprehensive suite of unit tests for the attached code.
Ensure that your responses are concise and technical, providing precise PHP examples that adhere to Laravel best practices and conventions. Apply object-oriented programming principles with a focus on SOLID design, prioritizing code iteration and modularization over duplication.
When writing unit tests, select descriptive names for test methods and variables, and use directories in lowercase with dashes following Laravel's conventions (e.g., app/Http/Controllers). Prioritize the use of dependency injection and service containers to create maintainable code that leverages PHP 8.1+ features.
Conform to PSR-12 coding standards and enforce strict typing using declare(strict_types=1);. Utilize Laravel's testing tools, particularly PHPUnit, to efficiently construct tests that validate the code functionality. Implement error handling and logging in your tests using Laravel's built-in features, and employ middleware testing techniques for request filtering and modification validation.
Ensure that your test cases cover the interactions using Laravel's Eloquent ORM and query builder, applying suitable practices for database migrations and seeders in a testing environment. Manage dependencies using the latest stable versions of Laravel and Composer, and rely on Eloquent ORM over raw SQL queries wherever applicable.
Adopt the Repository pattern for testing the data access layer, utilize Laravel's built-in authentication and authorization features in your tests, and implement job queue scenarios for long-running task verifications. Incorporate API versioning checks for endpoint tests and use Laravel's localization features to simulate multi-language support.
Use Laravel Mix in your testing workflow for asset handling and ensure efficient indexing for database operations tested within your suite. Leverage Laravel's pagination features and implement comprehensive error logging and monitoring in your test scenarios. Follow Laravel's MVC architecture, ensure route definitions are verified through tests, and employ Form Requests for validating request data.
Utilize Laravel's Blade engine during the testing of view components and confirm the establishment of database relationships through Eloquent. Implement API resource transformations and mock event and listener systems to maintain decoupled code functionality in your tests. Finally, utilize database transactions during tests to ensure data integrity, and use Laravel's scheduling features to validate recurring tasks.
New Module
Create a new PyTorch module
Please create a new PyTorch module following these guidelines:
- Include docstrings for the model class and methods
- Add type hints for all parameters
- Add basic validation in __init__
RAG Pipeline Design
Comprehensive retrieval-augmented generation system design
Design a RAG (Retrieval-Augmented Generation) system with:

Document Processing:
- Text extraction strategy
- Chunking approach with size and overlap parameters
- Metadata extraction and enrichment
- Document hierarchy preservation

Vector Store Integration:
- Embedding model selection and rationale
- Vector database architecture
- Indexing strategy
- Query optimization

Retrieval Strategy:
- Hybrid search (vector + keyword)
- Re-ranking methodology
- Metadata filtering capabilities
- Multi-query reformulation

LLM Integration:
- Context window optimization
- Prompt engineering for retrieval
- Citation and source tracking
- Hallucination mitigation strategies

Evaluation Framework:
- Retrieval relevance metrics
- Answer accuracy measures
- Ground truth comparison
- End-to-end benchmarking

Deployment Architecture:
- Caching strategies
- Scaling considerations
- Latency optimization
- Monitoring approach

The user's knowledge base has the following characteristics:
Data validation check
Checks input validation and sanitization
Analyze this code for data validation vulnerabilities. Ask about data sources, validation rules, and how the data is used throughout the application.
My prompt
Sequential Thinking Activation
<!-- Sequential Thinking Workflow -->
<assistant>
    <toolbox>
        <mcp_server name="sequential-thinking"
                        role="workflow_controller"
                        execution="sequential-thinking"
                        description="Initiate the sequential-thinking MCP server">
            <tool name="STEP" value="1">
                <description>Gather context by reading the relevant file(s).</description>
                <arguments>
                    <argument name="instructions" value="Seek proper context in the codebase to understand what is required. If you are unsure, ask the user." type="string" required="true"/>
                    <argument name="should_read_entire_file" type="boolean" default="true" required="false"/>
                </arguments>
                <result type="string" description="Context gathered from the file(s). Output can be passed to subsequent steps."/>
            </tool>
            <tool name="STEP" value="2">
                <description>Generate code changes based on the gathered context (from STEP 1).</description>
                <arguments>
                    <argument name="instructions" value="Generate the proper changes/corrections based on context from STEP 1." type="string" required="true"/>
                    <argument name="code_edit" type="object" required="true" description="Output: The proposed code modifications."/>
                </arguments>
                <result type="object" description="The generated code changes (code_edit object). Output can be passed to subsequent steps."/>
            </tool>
            <tool name="STEP" value="3">
                <description>Review the generated changes (from STEP 2) and suggest improvements.</description>
                <arguments>
                    <argument name="instructions" type="string" value="Review the changes applied in STEP 2 for gaps, correctness, and adherence to guidelines. Suggest improvements or identify any additional steps needed." required="true"/>
                </arguments>
                <result type="string" description="Review feedback, suggested improvements, or confirmation of completion. Final output of the workflow."/>
            </tool>
        </mcp_server>
    </toolbox>
</assistant>

Context

Learn more
@code
Reference specific functions or classes from throughout your project
@docs
Reference the contents from any documentation site
@diff
Reference all of the changes you've made to your current branch
@terminal
Reference the last command you ran in your IDE's terminal and its output
@problems
Get Problems from the current file
@folder
Uses the same retrieval mechanism as @Codebase, but only on a single folder
@codebase
Reference the most relevant snippets from your codebase
@file
Reference any file in your current workspace
@url
Reference the markdown converted contents of a given URL
@currentFile
Reference the currently open file
@commit
@os
Reference the architecture and platform of your current operating system
@clipboard
Reference recent clipboard items

Azure Blob Storage

${{ secrets.max-eder/my-first-assistant-4286/continuedev/azure-blob-storage-dev-data/AZURE_SERVER_URL }}

MCP Servers

Learn more

Sequential Thinking

docker run --rm -i mcp/sequentialthinking

Memory

npx -y @modelcontextprotocol/server-memory

Github

docker run -i --rm -e GITHUB_PERSONAL_ACCESS_TOKEN mcp/github