mtorres6739/mtorres6739-first-assistant icon
public
Published on 5/26/2025
My First Assistant

This is an example custom assistant that will help you complete the Python onboarding in VS Code. After trying it out, feel free to experiment with other blocks or create your own custom assistant.

Prompts
Models
Context
relace Relace Instant Apply model icon

Relace Instant Apply

relace

40kinput·32koutput
anthropic Claude 3.7 Sonnet model icon

Claude 3.7 Sonnet

anthropic

200kinput·8.192koutput
anthropic Claude 3.5 Haiku model icon

Claude 3.5 Haiku

anthropic

200kinput·8.192koutput
mistral Codestral model icon

Codestral

mistral

voyage Voyage AI rerank-2 model icon

Voyage AI rerank-2

voyage

voyage voyage-code-3 model icon

voyage-code-3

voyage

anthropic Claude 4 Sonnet model icon

Claude 4 Sonnet

anthropic

200kinput·64koutput
gemini Gemini 2.5 Pro model icon

Gemini 2.5 Pro

gemini

1048kinput·65.536koutput
openai OpenAI GPT-4o model icon

OpenAI GPT-4o

OpenAI

128kinput·16.384koutput
openai o3-mini model icon

o3-mini

OpenAI

200kinput·100koutput
lmstudio deepseek-r1 8b model icon

deepseek-r1 8b

lmstudio

openai OpenAI GPT-4.1 model icon

OpenAI GPT-4.1

OpenAI

1047kinput·32.768koutput

No Rules configured

Pythonhttps://docs.python.org/3/
Continuehttps://docs.continue.dev
Next.jshttps://nextjs.org/docs/app
Reacthttps://react.dev/reference/
Vercel AI SDK Docshttps://sdk.vercel.ai/docs/
Retell AI Docshttps://docs.retellai.com/general/introduction
torch.nn Docshttps://pytorch.org/docs/stable/nn.html
Pandashttps://pandas.pydata.org/docs/
NumPyhttps://numpy.org/doc/stable/

Prompts

Learn more
Write Cargo test
Write unit test with Cargo
Use Cargo to write a comprehensive suite of unit tests for this function
API route
Create an API route.
Create an API route with the following functionality.
Data Pipeline Development
Create robust and scalable data processing pipelines
Generate a data processing pipeline with these requirements:

Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues

Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations

Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring

Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests

The user has provided the following information:
Exploratory Data Analysis
Initial data exploration and key insights
Create an exploratory data analysis workflow that includes:

Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions

Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)

Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation

Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook

The user has provided the following information:

Context

Learn more
@code
Reference specific functions or classes from throughout your project
@docs
Reference the contents from any documentation site
@diff
Reference all of the changes you've made to your current branch
@terminal
Reference the last command you ran in your IDE's terminal and its output
@problems
Get Problems from the current file
@folder
Uses the same retrieval mechanism as @Codebase, but only on a single folder
@codebase
Reference the most relevant snippets from your codebase
@file
Reference any file in your current workspace
@url
Reference the markdown converted contents of a given URL
@currentFile
Reference the currently open file
@open
Reference the contents of all of your open files
@os
Reference the architecture and platform of your current operating system
@commit

No Data configured

MCP Servers

Learn more

Playwright

npx -y @executeautomation/playwright-mcp-server

Memory

npx -y @modelcontextprotocol/server-memory

Browser MCP

npx -y @browsermcp/mcp@latest

Tavily Search

npx -y tavily-mcp@0.1.4

Filesystem

npx -y @modelcontextprotocol/server-filesystem ${{ secrets.mtorres6739/mtorres6739-first-assistant/anthropic/filesystem-mcp/PATH }}

Brave Search

npx -y @modelcontextprotocol/server-brave-search

context7

npx -y @upstash/context7-mcp

RetellAI MCP Server

npx -y @abhaybabbar/retellai-mcp-server

21st-Dev Magic MCP

npx -y @21st-dev/magic@latest

Fetch MCP

node /Users/mathewtorres/Documents/Cline/MCP/fetch-mcp/dist/index.js

Browser Tools MCP

npx -y @agentdeskai/browser-tools-mcp@latest