the quantumxai platform
No Rules configured
Create a new Next.js page based on the following description.
Design a RAG (Retrieval-Augmented Generation) system with:
Document Processing:
- Text extraction strategy
- Chunking approach with size and overlap parameters
- Metadata extraction and enrichment
- Document hierarchy preservation
Vector Store Integration:
- Embedding model selection and rationale
- Vector database architecture
- Indexing strategy
- Query optimization
Retrieval Strategy:
- Hybrid search (vector + keyword)
- Re-ranking methodology
- Metadata filtering capabilities
- Multi-query reformulation
LLM Integration:
- Context window optimization
- Prompt engineering for retrieval
- Citation and source tracking
- Hallucination mitigation strategies
Evaluation Framework:
- Retrieval relevance metrics
- Answer accuracy measures
- Ground truth comparison
- End-to-end benchmarking
Deployment Architecture:
- Caching strategies
- Scaling considerations
- Latency optimization
- Monitoring approach
The user's knowledge base has the following characteristics:
Create an exploratory data analysis workflow that includes:
Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions
Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)
Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation
Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook
The user has provided the following information:
Review this API route for security vulnerabilities. Ask questions about the context, data flow, and potential attack vectors. Be thorough in your investigation.
Create a client component with the following functionality. If writing this as a server component is not possible, explain why.
Generate a data processing pipeline with these requirements:
Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues
Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations
Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring
Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests
The user has provided the following information:
Please review my Next.js code with a focus on security issues.
Use the below as a starting point, but consider any other potential issues
You do not need to address every single area below, only what is relevant to the user's code.
1. Data Exposure:
- Verify Server Components aren't passing full database objects to Client Components
- Check for sensitive data in props passed to 'use client' components
- Look for direct database queries outside a Data Access Layer
- Ensure environment variables (non NEXT_PUBLIC_) aren't exposed to client
2. Server Actions ('use server'):
- Confirm input validation on all parameters
- Verify user authentication/authorization checks
- Check for unencrypted sensitive data in .bind() calls
3. Route Safety:
- Validate dynamic route parameters ([params])
- Check custom route handlers (route.ts) for proper CSRF protection
- Review middleware.ts for security bypass possibilities
4. Data Access:
- Ensure parameterized queries for database operations
- Verify proper authorization checks in data fetching functions
- Look for sensitive data exposure in error messages
Key files to focus on: files with 'use client', 'use server', route.ts, middleware.ts, and data access functions.
Please create a new PyTorch module following these guidelines:
- Include docstrings for the model class and methods
- Add type hints for all parameters
- Add basic validation in __init__
Please create a new Svelte component following these guidelines:
- Include JSDoc comments for component and props
- Include basic error handling and loading states
- ALWAYS add a TypeScript prop interface
Create a new LanceDB table with the description given below. It should follow these rules:
- Explicitly define the schema of the table with PyArrow
- Use dataframes to store and manipulate data
- If there is a column with embeddings, call it "vector"
Here is a basic example: ```python import lancedb import pandas as pd import pyarrow as pa
# Connect to the database db = lancedb.connect("data/sample-lancedb")
# Create a table with an empty schema schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))]) tbl = db.create_table("empty_table", schema=schema)
# Insert data into the table data = pd.DataFrame({"vector": [[1.0, 2.0], [3.0, 4.0]]}) tbl.add(data) ```
${{ secrets.quantum-energyai/qxay/continuedev/logstash-dev-data/LOGSTASH_URL }}
URL: https://mcp.context7.com/mcp
npx -y exa-mcp-server
docker run -i --rm mcp/postgres ${{ secrets.quantum-energyai/qxay/docker/mcp-postgres/POSTGRES_CONNECTION_STRING }}
npx -y @modelcontextprotocol/server-brave-search
npx -y @modelcontextprotocol/server-filesystem ${{ secrets.quantum-energyai/qxay/anthropic/filesystem-mcp/PATH }}
npx -y @executeautomation/playwright-mcp-server