ryan-walters/rhino icon
public
Published on 6/24/2025
Rhino

Rhino

Rules
Prompts
Models
Context
Data
relace Relace Instant Apply model icon

Relace Instant Apply

relace

40kinput·32koutput
anthropic Claude 3.7 Sonnet model icon

Claude 3.7 Sonnet

anthropic

200kinput·8.192koutput
anthropic Claude 3.5 Sonnet model icon

Claude 3.5 Sonnet

anthropic

200kinput·8.192koutput
mistral Codestral model icon

Codestral

mistral

voyage voyage-code-3 model icon

voyage-code-3

voyage

voyage Voyage AI rerank-2 model icon

Voyage AI rerank-2

voyage

You are an experienced data scientist who specializes in Python-based
data science and machine learning. You use the following tools:
- Python 3 as the primary programming language
- PyTorch for deep learning and neural networks
- NumPy for numerical computing and array operations
- Pandas for data manipulation and analysis
- Jupyter for interactive development and visualization
- Conda for environment and package management
- Matplotlib for data visualization and plotting
Condahttps://docs.conda.io/en/latest/
Matplotlibhttps://matplotlib.org/stable/
Jupyterhttps://docs.jupyter.org/en/latest/

Prompts

Learn more
My prompt
Sequential Thinking Activation
<!-- Sequential Thinking Workflow -->
<assistant>
    <toolbox>
        <mcp_server name="sequential-thinking"
                        role="workflow_controller"
                        execution="sequential-thinking"
                        description="Initiate the sequential-thinking MCP server">
            <tool name="STEP" value="1">
                <description>Gather context by reading the relevant file(s).</description>
                <arguments>
                    <argument name="instructions" value="Seek proper context in the codebase to understand what is required. If you are unsure, ask the user." type="string" required="true"/>
                    <argument name="should_read_entire_file" type="boolean" default="true" required="false"/>
                </arguments>
                <result type="string" description="Context gathered from the file(s). Output can be passed to subsequent steps."/>
            </tool>
            <tool name="STEP" value="2">
                <description>Generate code changes based on the gathered context (from STEP 1).</description>
                <arguments>
                    <argument name="instructions" value="Generate the proper changes/corrections based on context from STEP 1." type="string" required="true"/>
                    <argument name="code_edit" type="object" required="true" description="Output: The proposed code modifications."/>
                </arguments>
                <result type="object" description="The generated code changes (code_edit object). Output can be passed to subsequent steps."/>
            </tool>
            <tool name="STEP" value="3">
                <description>Review the generated changes (from STEP 2) and suggest improvements.</description>
                <arguments>
                    <argument name="instructions" type="string" value="Review the changes applied in STEP 2 for gaps, correctness, and adherence to guidelines. Suggest improvements or identify any additional steps needed." required="true"/>
                </arguments>
                <result type="string" description="Review feedback, suggested improvements, or confirmation of completion. Final output of the workflow."/>
            </tool>
        </mcp_server>
    </toolbox>
</assistant>
Data Pipeline Development
Create robust and scalable data processing pipelines
Generate a data processing pipeline with these requirements:

Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues

Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations

Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring

Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests

The user has provided the following information:
API route inspection
Analyzes API routes for security issues
Review this API route for security vulnerabilities. Ask questions about the context, data flow, and potential attack vectors. Be thorough in your investigation.

Context

Learn more
@diff
Reference all of the changes you've made to your current branch
@codebase
Reference the most relevant snippets from your codebase
@url
Reference the markdown converted contents of a given URL
@folder
Uses the same retrieval mechanism as @Codebase, but only on a single folder
@terminal
Reference the last command you ran in your IDE's terminal and its output
@code
Reference specific functions or classes from throughout your project
@file
Reference any file in your current workspace

Google Cloud Storage

${{ secrets.ryan-walters/rhino/continuedev/google-cloud-storage-dev-data/GCP_SERVER_URL }}

MCP Servers

Learn more

Memory

npx -y @modelcontextprotocol/server-memory

Browser MCP

npx -y @browsermcp/mcp@latest

Filesystem

npx -y @modelcontextprotocol/server-filesystem ${{ secrets.ryan-walters/rhino/anthropic/filesystem-mcp/PATH }}

Brave Search

npx -y @modelcontextprotocol/server-brave-search

Exa

npx -y exa-mcp-server

Slack

docker run -i --rm -e SLACK_BOT_TOKEN -e SLACK_TEAM_ID mcp/slack

Playwright

npx -y @executeautomation/playwright-mcp-server

Postgres

docker run -i --rm mcp/postgres ${{ secrets.ryan-walters/rhino/docker/mcp-postgres/POSTGRES_CONNECTION_STRING }}