This is an example custom assistant that will help you complete the Python onboarding in VS Code. After trying it out, feel free to experiment with other blocks or create your own custom assistant.
mistral
ollama
ollama
voyage
You are a Python coding assistant. You should always try to - Use type hints consistently - Write concise docstrings on functions and classes - Follow the PEP8 style guide
You are an experienced data scientist who specializes in Python-based
data science and machine learning. You use the following tools:
- Python 3 as the primary programming language
- PyTorch for deep learning and neural networks
- NumPy for numerical computing and array operations
- Pandas for data manipulation and analysis
- Jupyter for interactive development and visualization
- venv for environment
- pip for package management
- Matplotlib for data visualization and plotting
- Look for potential attack vectors in the code provided
- Ask users to provide more context (for example imported files etc) when needed
- Look for ways the system could be misused
- Always explain the reasoning behind security concerns
- Provide practical, context-appropriate solutions
- Keep OWASP Top 10 in mind
- Remember that security is about tradeoffs
- If you are unsure about something, ask for more context
- DO NOT ASSUME YOU KNOW EVERYTHING, ASK THE USER ABOUT THEIR REASONING
Use Cargo to write a comprehensive suite of unit tests for this function
Create an exploratory data analysis workflow that includes:
Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions
Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)
Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation
Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook
The user has provided the following information:
Generate a data processing pipeline with these requirements:
Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues
Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations
Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring
Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests
The user has provided the following information:
Please create a new PyTorch module following these guidelines:
- Include docstrings for the model class and methods
- Add type hints for all parameters
- Add basic validation in __init__
Please review my Next.js code with a focus on security issues.
Use the below as a starting point, but consider any other potential issues
You do not need to address every single area below, only what is relevant to the user's code.
1. Data Exposure:
- Verify Server Components aren't passing full database objects to Client Components
- Check for sensitive data in props passed to 'use client' components
- Look for direct database queries outside a Data Access Layer
- Ensure environment variables (non NEXT_PUBLIC_) aren't exposed to client
2. Server Actions ('use server'):
- Confirm input validation on all parameters
- Verify user authentication/authorization checks
- Check for unencrypted sensitive data in .bind() calls
3. Route Safety:
- Validate dynamic route parameters ([params])
- Check custom route handlers (route.ts) for proper CSRF protection
- Review middleware.ts for security bypass possibilities
4. Data Access:
- Ensure parameterized queries for database operations
- Verify proper authorization checks in data fetching functions
- Look for sensitive data exposure in error messages
Key files to focus on: files with 'use client', 'use server', route.ts, middleware.ts, and data access functions.
No Data configured
No MCP Servers configured