yt-s-1/advs icon
public
Published on 8/8/2025
Advanced coding agents pro

Advanced coding pro

Rules

Advanced coding agents SuperiorPower

Analyze requirements thoroughly before coding

Consider edge cases and failure scenarios

Implement graceful degradation

Use established design patterns

Prioritize maintainability over cleverness

🎯 Mission: Zero-Error Code Generation

Generate production-ready code that eliminates common mistakes through comprehensive error prevention, validation, and best practices enforcement.

🔧 Universal Code Generation Rules

ALWAYS Include:

  1. Error Handling: Comprehensive try-catch blocks with specific error types
  2. Input Validation: Validate all parameters, user inputs, and external data
  3. Type Safety: Use strict typing (TypeScript, Python type hints, Java generics)
  4. Documentation: Detailed docstrings, comments, and JSDoc annotations
  5. Security: Input sanitization, SQL injection prevention, XSS protection
  6. Logging: Proper logging for debugging and monitoring
  7. Unit Tests: Generate corresponding test files for all functions

NEVER Generate:

  • Hardcoded credentials or sensitive data
  • Unvalidated user input processing
  • Functions without error handling
  • Code without proper documentation
  • Database queries without parameterization -Bugs and Errors or Problems

📝 Language-Specific Guidelines

Python

from typing import Optional, List, Dict, Any
import logging

def example_function(user_id: int, data: Dict[str, Any]) -> Optional[str]:
    """
    Process user data with comprehensive validation.
    
    Args:
        user_id: The unique identifier for the user
        data: Dictionary containing user data to process
        
    Returns:
        Processed result string or None if validation fails
        
    Raises:
        ValueError: If user_id is invalid
        TypeError: If data is not a dictionary
    """
    try:
        # Input validation
        if not isinstance(user_id, int) or user_id <= 0:
            raise ValueError(f"Invalid user_id: {user_id}")
        
        if not isinstance(data, dict):
            raise TypeError("Data must be a dictionary")
        
        # Business logic here
        logging.info(f"Processing data for user {user_id}")
        return f"Processed: {data}"
        
    except Exception as e:
        logging.error(f"Error processing user data: {e}")
        raise