Specialized in Next.js framework, focusing on server-side rendering, API routes, and optimal performance practices.
- Follow Next.js patterns, use app router and correctly use server and client components.
- Use React Hook Form for form handling.
- Use React Context for state management.
- Follow AirBnB style guide for code formatting.
- Use PascalCase when creating new React files. UserCard, not user-card.
- Use named exports when creating new react components.
- DO NOT TEACH ME HOW TO SET UP THE PROJECT, JUMP STRAIGHT TO WRITING COMPONENTS AND CODE.
Create an API route with the following functionality.
Create a client component with the following functionality. If writing this as a server component is not possible, explain why.
Create a new Next.js page based on the following description.
Create or update a Prisma schema with the following models and relationships. Include necessary fields, relationships, and any relevant enums.
Create a server component with the following functionality. If writing this as a server component is not possible, explain why.
On a scale of 1-10, how testable is this code?
Please analyze the provided code and rate it on a scale of 1-10 for how well it follows the Single Responsibility Principle (SRP), where:
1 = The code completely violates SRP, with many unrelated responsibilities mixed together
10 = The code perfectly follows SRP, with each component having exactly one well-defined responsibility
In your analysis, please consider:
1. Primary responsibility: Does each class/function have a single, well-defined purpose?
2. Cohesion: How closely related are the methods and properties within each class?
3. Reason to change: Are there multiple distinct reasons why the code might need to be modified?
4. Dependency relationships: Does the code mix different levels of abstraction or concerns?
5. Naming clarity: Do the names of classes/functions clearly indicate their single responsibility?
Please provide:
- Numerical rating (1-10)
- Brief justification for the rating
- Specific examples of SRP violations (if any)
- Suggestions for improving SRP adherence
- Any positive aspects of the current design
Rate more harshly if you find:
- Business logic mixed with UI code
- Data access mixed with business rules
- Multiple distinct operations handled by one method
- Classes that are trying to do "everything"
- Methods that modify the system in unrelated ways
Rate more favorably if you find:
- Clear separation of concerns
- Classes/functions with focused, singular purposes
- Well-defined boundaries between different responsibilities
- Logical grouping of related functionality
- Easy-to-test components due to their single responsibility
Please analyze the provided code and evaluate how well it adheres to each of the SOLID principles on a scale of 1-10, where:
1 = Completely violates the principle
10 = Perfectly implements the principle
For each principle, provide:
- Numerical rating (1-10)
- Brief justification for the rating
- Specific examples of violations (if any)
- Suggestions for improvement
- Positive aspects of the current design
## Single Responsibility Principle (SRP)
Rate how well each class/function has exactly one responsibility and one reason to change.
Consider:
- Does each component have a single, well-defined purpose?
- Are different concerns properly separated (UI, business logic, data access)?
- Would changes to one aspect of the system require modifications across multiple components?
## Open/Closed Principle (OCP)
Rate how well the code is open for extension but closed for modification.
Consider:
- Can new functionality be added without modifying existing code?
- Is there effective use of abstractions, interfaces, or inheritance?
- Are extension points well-defined and documented?
- Are concrete implementations replaceable without changes to client code?
## Liskov Substitution Principle (LSP)
Rate how well subtypes can be substituted for their base types without affecting program correctness.
Consider:
- Can derived classes be used anywhere their base classes are used?
- Do overridden methods maintain the same behavior guarantees?
- Are preconditions not strengthened and postconditions not weakened in subclasses?
- Are there any type checks that suggest LSP violations?
## Interface Segregation Principle (ISP)
Rate how well interfaces are client-specific rather than general-purpose.
Consider:
- Are interfaces focused and minimal?
- Do clients depend only on methods they actually use?
- Are there "fat" interfaces that should be split into smaller ones?
- Are there classes implementing methods they don't need?
## Dependency Inversion Principle (DIP)
Rate how well high-level modules depend on abstractions rather than concrete implementations.
Consider:
- Do components depend on abstractions rather than concrete classes?
- Is dependency injection or inversion of control used effectively?
- Are dependencies explicit rather than hidden?
- Can implementations be swapped without changing client code?
## Overall SOLID Score
Calculate an overall score (average of the five principles) and provide a summary of the major strengths and weaknesses.
Please highlight specific code examples that best demonstrate adherence to or violation of each principle.
What's one most meaningful thing I could do to improve the quality of this code? It shouldn't be too drastic but should still improve the code.
Please review my Next.js code with a focus on security issues.
Use the below as a starting point, but consider any other potential issues
You do not need to address every single area below, only what is relevant to the user's code.
1. Data Exposure:
- Verify Server Components aren't passing full database objects to Client Components
- Check for sensitive data in props passed to 'use client' components
- Look for direct database queries outside a Data Access Layer
- Ensure environment variables (non NEXT_PUBLIC_) aren't exposed to client
2. Server Actions ('use server'):
- Confirm input validation on all parameters
- Verify user authentication/authorization checks
- Check for unencrypted sensitive data in .bind() calls
3. Route Safety:
- Validate dynamic route parameters ([params])
- Check custom route handlers (route.ts) for proper CSRF protection
- Review middleware.ts for security bypass possibilities
4. Data Access:
- Ensure parameterized queries for database operations
- Verify proper authorization checks in data fetching functions
- Look for sensitive data exposure in error messages
Key files to focus on: files with 'use client', 'use server', route.ts, middleware.ts, and data access functions.
Your task is to analyze the user's code to help them understand it's current caching behavior, and mention any potential issues.
Be concise, only mentioning what is necessary.
Use the following as a starting point for your review:
1. Examine the four key caching mechanisms:
- Request Memoization in Server Components
- Data Cache behavior with fetch requests
- Full Route Cache (static vs dynamic rendering)
- Router Cache for client-side navigation
2. Look for and identify:
- Fetch configurations (cache, revalidate options)
- Dynamic route segments and generateStaticParams
- Route segment configs affecting caching
- Cache invalidation methods (revalidatePath, revalidateTag)
3. Highlight:
- Potential caching issues or anti-patterns
- Opportunities for optimization
- Unexpected dynamic rendering
- Unnecessary cache opt-outs
4. Provide clear explanations of:
- Current caching behavior
- Performance implications
- Recommended adjustments if needed
Lastly, point them to the following link to learn more: https://nextjs.org/docs/app/building-your-application/caching
What's one most meaningful thing I could do to improve the quality of this code? It shouldn't be too drastic but should still improve the code.
@diff
Generate a commit message for the above set of changes. First, give a single sentence, no more than 80 characters. Then, after 2 line breaks, give a list of no more than 5 short bullet points, each no more than 40 characters. Output nothing except for the commit message, and don't surround it in quotes.
Use Jest to write a comprehensive suite of unit tests for this function
No Data configured
No MCP Servers configured