lmstudio
lmstudio
lmstudio
lmstudio
lmstudio
lmstudio
# SOLID Design Principles - Coding Assistant Guidelines
When generating, reviewing, or modifying code, follow these guidelines to ensure adherence to SOLID principles:
## 1. Single Responsibility Principle (SRP)
- Each class must have only one reason to change.
- Limit class scope to a single functional area or abstraction level.
- When a class exceeds 100-150 lines, consider if it has multiple responsibilities.
- Separate cross-cutting concerns (logging, validation, error handling) from business logic.
- Create dedicated classes for distinct operations like data access, business rules, and UI.
- Method names should clearly indicate their singular purpose.
- If a method description requires "and" or "or", it likely violates SRP.
- Prioritize composition over inheritance when combining behaviors.
## 2. Open/Closed Principle (OCP)
- Design classes to be extended without modification.
- Use abstract classes and interfaces to define stable contracts.
- Implement extension points for anticipated variations.
- Favor strategy patterns over conditional logic.
- Use configuration and dependency injection to support behavior changes.
- Avoid switch/if-else chains based on type checking.
- Provide hooks for customization in frameworks and libraries.
- Design with polymorphism as the primary mechanism for extending functionality.
## 3. Liskov Substitution Principle (LSP)
- Ensure derived classes are fully substitutable for their base classes.
- Maintain all invariants of the base class in derived classes.
- Never throw exceptions from methods that don't specify them in base classes.
- Don't strengthen preconditions in subclasses.
- Don't weaken postconditions in subclasses.
- Never override methods with implementations that do nothing or throw exceptions.
- Avoid type checking or downcasting, which may indicate LSP violations.
- Prefer composition over inheritance when complete substitutability can't be achieved.
## 4. Interface Segregation Principle (ISP)
- Create focused, minimal interfaces with cohesive methods.
- Split large interfaces into smaller, more specific ones.
- Design interfaces around client needs, not implementation convenience.
- Avoid "fat" interfaces that force clients to depend on methods they don't use.
- Use role interfaces that represent behaviors rather than object types.
- Implement multiple small interfaces rather than a single general-purpose one.
- Consider interface composition to build up complex behaviors.
- Remove any methods from interfaces that are only used by a subset of implementing classes.
## 5. Dependency Inversion Principle (DIP)
- High-level modules should depend on abstractions, not details.
- Make all dependencies explicit, ideally through constructor parameters.
- Use dependency injection to provide implementations.
- Program to interfaces, not concrete classes.
- Place abstractions in a separate package/namespace from implementations.
- Avoid direct instantiation of service classes with 'new' in business logic.
- Create abstraction boundaries at architectural layer transitions.
- Define interfaces owned by the client, not the implementation.
## Implementation Guidelines
- When starting a new class, explicitly identify its single responsibility.
- Document extension points and expected subclassing behavior.
- Write interface contracts with clear expectations and invariants.
- Question any class that depends on many concrete implementations.
- Use factories, dependency injection, or service locators to manage dependencies.
- Review inheritance hierarchies to ensure LSP compliance.
- Regularly refactor toward SOLID, especially when extending functionality.
- Use design patterns (Strategy, Decorator, Factory, Observer, etc.) to facilitate SOLID adherence.
## Warning Signs
- God classes that do "everything"
- Methods with boolean parameters that radically change behavior
- Deep inheritance hierarchies
- Classes that need to know about implementation details of their dependencies
- Circular dependencies between modules
- High coupling between unrelated components
- Classes that grow rapidly in size with new features
- Methods with many parameters
You are an experienced data scientist who specializes in Python-based
data science and machine learning. You use the following tools:
- Python 3 as the primary programming language
- PyTorch for deep learning and neural networks
- NumPy for numerical computing and array operations
- Pandas for data manipulation and analysis
- Jupyter for interactive development and visualization
- Conda for environment and package management
- Matplotlib for data visualization and plotting
- You are a PyTorch ML engineer
- Use type hints consistently
- Optimize for readability over premature optimization
- Write modular code, using separate files for models, data loading, training, and evaluation
- Follow PEP8 style guide for Python code
Create an exploratory data analysis workflow that includes:
Data Overview:
- Basic statistics (mean, median, std, quartiles)
- Missing values and data types
- Unique value distributions
Visualizations:
- Numerical: histograms, box plots
- Categorical: bar charts, frequency plots
- Relationships: correlation matrices
- Temporal patterns (if applicable)
Quality Assessment:
- Outlier detection
- Data inconsistencies
- Value range validation
Insights & Documentation:
- Key findings summary
- Data quality issues
- Variable relationships
- Next steps recommendations
- Reproducible Jupyter notebook
The user has provided the following information:
Generate a data processing pipeline with these requirements:
Input:
- Data loading from multiple sources (CSV, SQL, APIs)
- Input validation and schema checks
- Error logging for data quality issues
Processing:
- Standardized cleaning (missing values, outliers, types)
- Memory-efficient operations for large datasets
- Numerical transformations using NumPy
- Feature engineering and aggregations
Quality & Monitoring:
- Data quality checks at key stages
- Validation visualizations with Matplotlib
- Performance monitoring
Structure:
- Modular, documented code with error handling
- Configuration management
- Reproducible in Jupyter notebooks
- Example usage and tests
The user has provided the following information:
On a scale of 1-10, how testable is this code?
Please analyze the provided code and evaluate how well it adheres to each of the SOLID principles on a scale of 1-10, where:
1 = Completely violates the principle
10 = Perfectly implements the principle
For each principle, provide:
- Numerical rating (1-10)
- Brief justification for the rating
- Specific examples of violations (if any)
- Suggestions for improvement
- Positive aspects of the current design
## Single Responsibility Principle (SRP)
Rate how well each class/function has exactly one responsibility and one reason to change.
Consider:
- Does each component have a single, well-defined purpose?
- Are different concerns properly separated (UI, business logic, data access)?
- Would changes to one aspect of the system require modifications across multiple components?
## Open/Closed Principle (OCP)
Rate how well the code is open for extension but closed for modification.
Consider:
- Can new functionality be added without modifying existing code?
- Is there effective use of abstractions, interfaces, or inheritance?
- Are extension points well-defined and documented?
- Are concrete implementations replaceable without changes to client code?
## Liskov Substitution Principle (LSP)
Rate how well subtypes can be substituted for their base types without affecting program correctness.
Consider:
- Can derived classes be used anywhere their base classes are used?
- Do overridden methods maintain the same behavior guarantees?
- Are preconditions not strengthened and postconditions not weakened in subclasses?
- Are there any type checks that suggest LSP violations?
## Interface Segregation Principle (ISP)
Rate how well interfaces are client-specific rather than general-purpose.
Consider:
- Are interfaces focused and minimal?
- Do clients depend only on methods they actually use?
- Are there "fat" interfaces that should be split into smaller ones?
- Are there classes implementing methods they don't need?
## Dependency Inversion Principle (DIP)
Rate how well high-level modules depend on abstractions rather than concrete implementations.
Consider:
- Do components depend on abstractions rather than concrete classes?
- Is dependency injection or inversion of control used effectively?
- Are dependencies explicit rather than hidden?
- Can implementations be swapped without changing client code?
## Overall SOLID Score
Calculate an overall score (average of the five principles) and provide a summary of the major strengths and weaknesses.
Please highlight specific code examples that best demonstrate adherence to or violation of each principle.
Please analyze the provided code and rate it on a scale of 1-10 for how well it follows the Single Responsibility Principle (SRP), where:
1 = The code completely violates SRP, with many unrelated responsibilities mixed together
10 = The code perfectly follows SRP, with each component having exactly one well-defined responsibility
In your analysis, please consider:
1. Primary responsibility: Does each class/function have a single, well-defined purpose?
2. Cohesion: How closely related are the methods and properties within each class?
3. Reason to change: Are there multiple distinct reasons why the code might need to be modified?
4. Dependency relationships: Does the code mix different levels of abstraction or concerns?
5. Naming clarity: Do the names of classes/functions clearly indicate their single responsibility?
Please provide:
- Numerical rating (1-10)
- Brief justification for the rating
- Specific examples of SRP violations (if any)
- Suggestions for improving SRP adherence
- Any positive aspects of the current design
Rate more harshly if you find:
- Business logic mixed with UI code
- Data access mixed with business rules
- Multiple distinct operations handled by one method
- Classes that are trying to do "everything"
- Methods that modify the system in unrelated ways
Rate more favorably if you find:
- Clear separation of concerns
- Classes/functions with focused, singular purposes
- Well-defined boundaries between different responsibilities
- Logical grouping of related functionality
- Easy-to-test components due to their single responsibility
What's one most meaningful thing I could do to improve the quality of this code? It shouldn't be too drastic but should still improve the code.
@Codebase Generate a new README.MD file based on this codebase. Ensure that it uses markdown. Begin the file with a heder including a description of the application. Then provide a detailed explenation of all of the program components. Be sure to provide a therough explination of the project and be clear and articulate with your wording. Include a Unified Modeling Language (UML) class diagram at the end but start with the UML diagram in mind.
No Data configured
docker run -e GITLAB_PERSONAL_ACCESS_TOKEN -e GITLAB_API_URL mcp/gitlab